A defect in homologous recombination leads to increased translesion synthesis in E. coli
نویسندگان
چکیده
DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the 'SOS signal'. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination.
منابع مشابه
RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis.
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase i...
متن کاملInterplay between replication and recombination in Escherichia coli: impact of the alternative DNA polymerases.
Homologous recombination (HR) and translesion synthesis (TLS) are two pathways involved in the tolerance of lesions that block the replicative DNA polymerase. However, whereas TLS is frequently error-prone and, therefore, can be deleterious, HR is generally error-free. Furthermore, because the recombination enzymes and alternative DNA polymerases that perform TLS may use the same substrate, the...
متن کاملCompetition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila
In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosop...
متن کاملBiological role of Escherichia coli translesion synthesis DNA polymerase IV
Damage tolerance is a measure of last resort to rescue cells from DNA damage, without which cells would become highly sensitive to killing by DNA-damaging agents. DNA lesion can be tolerated via different pathways, of which two best studied are homologous recombination and replicative lesion bypass. Replicative lesion bypass requires specialized DNA polymerases, most of which belong to the Y-fa...
متن کاملProteomic Profiling Reveals a Specific Role for Translesion DNA Polymerase η in the Alternative Lengthening of Telomeres
Cancer cells rely on the activation of telomerase or the alternative lengthening of telomeres (ALT) pathways for telomere maintenance and survival. ALT involves homologous recombination (HR)-dependent exchange and/or HR-associated synthesis of telomeric DNA. Utilizing proximity-dependent biotinylation (BioID), we sought to determine the proteome of telomeres in cancer cells that employ these di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016